Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol
نویسندگان
چکیده
Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.
منابع مشابه
Electronic Structure of the [Cu3(μ-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation
Identifying Cu-exchanged zeolites able to activate C-H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu3(μ-O)3]2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, nam...
متن کاملSynthesis of single-site copper catalysts for methane partial oxidation.
Cu-Exchanged zeolites are known as active materials for methane oxidation to methanol. However, understanding of the formation of Cu active species during synthesis, dehydration and activation is fragmented and rudimentary. We show here how a synthesis protocol guided by insight in the ion exchange elementary steps leads to highly uniform Cu species in mordenite (MOR).
متن کاملConversion of methane to methanol on copper-containing small-pore zeolites and zeotypes.
This communication reports the discovery of several small-pore Cu-zeolites and zeotypes that produce methanol from methane and water vapor, and produce more methanol per copper atom than Cu-ZSM-5 and Cu-mordenite. The new materials include Cu-SSZ-13, Cu-SSZ-16, Cu-SSZ-39, and Cu-SAPO-34.
متن کاملMethane partial oxidation in iron zeolites: theory versus experiment
The conversion of methane to methanol over zeolitic a-oxygen sites has been demonstrated using Fe-ZSM-5. To discriminate between monoand poly-nuclear active sites, we prepared the [Fe]-ZEO with iron in the ZEOlite lattice via direct synthesis and Fex-ZEO, by dispersion of x wt.% iron on the ZEOlite. Shape-selective formation of nano-clusters of iron oxides with various sizes is realized inside ...
متن کاملBis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation.
Dicopper species have been identified as the active sites in converting methane to methanol in Cu-zeolites. To understand the formation of these copper cores in mordenite, we used in situ time-resolved X-ray absorption spectroscopy during heat treatment. Significant dehydration enabled the reduction of the copper cores, after which molecular oxygen was cleaved. The activated oxygen bridged two ...
متن کامل